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CURRENT TRENDS IN THE SEISMIC ANALYSIS AND DESIGN OF HIGH RISE STRUCTURES  

by 

Nathan M. Newmark* 

INTRODUCTION  

The design of a structure is a process of synthesis, as contrasted 
with the analysis for given loadings or environmental conditions. In the 
design of a building to resist earthquake motions, the designer works within 
certain constraints such as: the architectural configuration of the 
building, the foundation conditions, the nature and extent of the hazard 
should failure or collapse occur, the possibility of an earthquake, the 
possible intensity of earthquakes in the region, the cost or available 
capital for construction, and similar factors. In the light of available 
information, the designer chooses the materials to be used, the method of 
construction, and the design concepts. He may choose to use steel, alu- 
minum, concrete, masonry, or a combination of materials. He may select a 
frame with rigid connections, a frame with bracing, or a structure carrying 
lateral forces primarily by deep walls or "shear walls", or a combination 
of these elements. 

But whatever the choice, the designer must have some basis for 
the selection of the strength and the proportions of the building and of the 
various members in it. The required strength depends on factors such as 
the intensity of earthquake motions to be expected, the flexibility of the 
structure, and its ductility or reserve strength before damage occurs. 
Because of the inter-relations among flexibility and strength of a struc-
ture, and the forces generated in it by earthquake motions, the dynamic 
design procedure must take these various factors into account. The ideal 
to be achieved is one involving appropriate flexibility and energy absor-
bing capacity, permitting the earthquake displacements to take place with-
out unduly large forces being generated. Tc achieve this end, control of 
the construction procedures and appropriate inspection practices are 
necessary. The attainment of the ductility required to resist earth-
quake motions must be emphasized. 

In the material presented here a general description of the 
response of relatively simple systems to earthquake motions is presented, 
first for elastic behavior, and then for inelastic behavior. Generaliza- 
tions are made about the relation of the response of multi-degree-of-
freedom systems to simple systems, both in the elastic and the inelastic 
range. Consideration it given to the general nature of the provisions 
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of current building codes for earthquake resistant design. Based on the 
relations between the results of theoretical analyses and current design 
provisions, estimates are made of the required ductility for earthquake 
resistant design of buildings. Finally, some comments are made about 
the design of actual buildings and their behavior in earthquakes. 

RESPONSE OF SIMPLE STRUCTURES TO EARTHQUAKE MOTIONS  

A series of structures of varying size and complexity is shown in 
Fig. 1, corresponding to a simple, relatively compact machine anchored to a 
foundation in Item 1, a simple bent or frame in Item 2, a more complex 
frame in Item 3, multistory buildings of 15 stories in Item 4, and of 40 
stories in Item 5, an elevated water tank in Item 6, and a suspension 
bridge responding either laterally or vertically in Item 7. The period of 
vibration, T, or the frequency of vibration, f, in the fundamental mode of 
vibration is indicated for each of these structures. 

Each of the structures shown in Fig. 1 could be represented by a 
dashpot, as shown in Fig. 2. The relation between the circular frequency 
of vibration w, the natural period f, and the period T, is given by the 
following equation in terms of the spring constant k, and the mass m: 

w2  = m 

f _ 1 _ w 
T - 2 11 

The effect of the dashpot is to produce damping of free vibra- 
tions or to reduce the amplitude of forced vibrarions, in general. The 
amount of damping is most conveniently considered in terms of the propor-
tionof critical damping, 13, which for most practical structures is rela-
tively small, in the range of 0.5 to 10 or 20 per cent, and does not 
appreciably affect the natural period cr frequency of vibration..  

The simple system in Fig. 2 can be used to represent the various 
modes of vibration of a multi-degree-of-freedom system. For the time 
being, however, we shall consider only the fundamental mode of vibration 
of the multi-degree-of-freedom systems in Fig. 1, as represented by the 
single-degree system in Fig. 2. 

When the base of the system, Fig. 2, moves with respect to time, 
the mass is set into motion also, and strains are induced in the spring. 
The motion of the base may be described by giving the displacement as a 
function of time, or, equally as descriptive of the motion, the time 
history of the velocity of the base, or the time history of its accelera-
tion. Strong motion earthquake accelerations with respect to time have 
been obtained for a number of earthquakes. Ground motions from other 
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sources of disturbances, such as quarry blasting, nuclear blasting, etc., 
are also available, and show many of the same characteristics. The most 
intense strong motion earthquake record that has been recorded so far is 
that of El Centro California earthquake of May 18, 1940. The recorded 
accelerogram for that earthquake, in the north south component of hori- 
zontal motion, is shown in Fig. 3. On the same figure are shown integra-
tion of the ground acceleration to give the variation of ground velocity 
with time, and the integration of velocity to give the variation of 
ground displacement with time. These integrations require base-line 
corrections of various sorts, and the magnitude of the maximum displace- 
ment may vary depending on how the corrections are made. The maximum 
velocity is relatively insensitive to the corrections, however. For 
this earthquake, with the integrations performed as shown in Fig. 3, the 
maximum ground acceleration is 0.32g, the maximum ground velocity 13.7 
in/sec., and the maximum ground displacement is 8.3 in. These three 
maximum values are of particular interest because they help to define the 
response motions of the various structures considered in Fig. 1 most 
accurately%  if all three maxima are taken into account. 

For the ground motions in Fig. 3 or any other type of ground 
motion that might be considered, the response of the simple oscillator 
shown in Fig. 2 can be readily computed as a function of time. The 
maximum values of the response of this oscillator are of particular 
interest. These maximum values might be stated in terms of the maximum 
strain in the spring in Fig. 2, = D; or alternatively, the response 
can be stated as the maximum spring force, or the maximum acceleration of 
the mass which is related to the maximum spring force directly when there 
is no damping; or by a quantity having the dimensions of velocity, which 
gives a measure of the maximum energy absorbed in the spring. This 
quantity, designated the pseudo-velocity is defined in such a way that 
the energy absorption in the spring is IliniV2  . The relations among the 
maximum relative displacement of the spring, D, the pseudo-velocity, V, 
and the pseudo-acceleration, Ag, which is a measure of the force in the 
spring, are as follows: 

V = w D (3) 

Ag = wV -=w2D (4) 

The pseudo-velocity V is nearly equal to the maximum relative 
velocity for systems with moderate or high frequencies, but may differ 
considerably from the maximum relative velocity for very low frequency 
systems. The pseudo-acceleration A is exactly equal to the maximum 
acceleration for systems with no damping, and is not greatly different 
from the maximum acceleration for systems with moderate amounts of 
damping, over the whole range of frequencies from very low to very high 
values. Typical plots of the response of the system as a function of 
period or frequency are called response spectra. Response spectrum plots 
are shown in Fig. 4 for acceleration and for relative displacement, for a 
system with a moderate amount of damping, subjected to an input similar to 
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that show in Fig. 3. This arithmetic plot of maximum response is simple 
and convenient to usea However, a somewhat more useful plot, which 
indicates at one and the same time the values for D, V, and A, is ind1- 
cated in Figa 5a This has the virtue that it also indicates more clearly 
the extreme or limiting values of the various parameters defining the 
response. 

For Fig. 5, the frequency is plotted on a logarithmic scale. 
Since the frequency is the reciprocal of the period, the logarithmic 
scale for period would have exactly the same spacing of the points, or in 
effect the plot would be turned end for end. 

The pseudo-velocity is plotted on a vertical scale, also loga- 
rithmically. Then on diagonal scales, as indicated on the figure, along 
an axis that extends upward from right to left are plotted values of the 
displacement, and along an axis that extends upward from left to right, 
the pseudo-acceleration, in such a way that any one point defines for a 
given frequency the displacement D, the pseudo-velocity V, or the pseudo- 
acceleration Aga Points are indicated in Fig. 5 for the seven structures 
of Fig. 1, plotted at the fundamental frequencies for the structure 
considered. One can read directly from the plot the response values. 
Some further interpretation is needed for the response of a multi -degree - 
of freedom system, however. More detailed explanation of these points 
is given in Ref. 1. 

The typical shape of the response spectrum shown in Fig. 5 is 
characteristic of the response for almost any type of input. A wide 
variety of motions have been considered in Refs. 2 and 3, ranging from 
simple pulses of displacement, velocity, or acceleration of the ground, 
through more complex motions such as those arising from nuclear blast 
detonations, and for a variety of earthquakes as taken from available 
strong motion records. Typical of all of these is the response spectrum 
shown in Fig. 6 of the same El Centro Earthquake, the motion records for 
which are given in Figa 3. The response spectrum for small amounts of 
damping is much more jagged than indicated by Fig. 5, but for the higher 
amounts of damping the response curves are smooth. The scales are 
chosen in this instance to represent the amplifications of the response 
relative to the ground motion values of displacement, velocity, or 
acceleration. 

The spectrum shown in Figa 6 is typical of response spectra for 
nearby all types of ground motion. It is noted that on the extreme left 
of Fig. 6, corresponding to very low frequency systems, the response for all 
degrees of damping approaches an asymptote corresponding to the value of the 
maximum ground displacement. A low frequency system corresponds to one 
having a very heavy mass and a very light spring. When the ground is moved 
relatively rapidly, the mass does not have time to move, and therefore the 
maximum strain in the spring is precisely equal to the maximum displacement 
of the ground. 
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On the other hand, for a very high frequency system, the 
spring is relatively stiff and the mass very light. Therefore, when 
the ground is moved, the stiff spring forces the mass to move in the 
same way the ground moves, and the mass must therefore have the same 
acceleration as the ground at every instant. Hence, the force in the 
spring is that required to move the mass with the same acceleration as 
the ground, and the maximum acceleration of the mass is precisely equal 
to the maximum acceleration of the ground. This is shown by the fact 
that all of the lines on the extreme right-hand side of the figure 
approach as an asymtote the maximum ground acceleration line. 

For intermediate frequency systems, there is an amplification 
of motion* In general the amplification factor for displacement is less 
than that for velocity, which in turn is less than that for acceleration. 
Amplification factors indicated by the figure are of the order of about 
3.5 for displacement. 4.2 for velocity, and about 9.5 for acceleration, 
for the undamped system in Fig. 6. For damping of the order of about 
10 per cent critical, these amplifications are slightly over 1 for dis-
placement, about 1.5 for velocity, and about 2 for acceleration* 

For an infinitely long harmonic oscillation, the amplification 
would become infinite for zero damping or would be limited by the amount 
of damping for systems with viscous damping. However, even in these 
cases the same general relationships are applicable. 

The results of similar calculations for other ground motions 
are quite consistent shown with those in Fig. 6, even for simple motions. 
The general nature of the response spectrum is shown in Fig. 7, as 
consisting of a central region of amplified response, and two limiting 
regions of response, in which, for low frequency systems, the response 
displacement is equal to the maximum ground displacement, and for high 
frequency systems, the response acceleration is equal to the maximum 
ground acceleration. For damping of the order of about 5 to 10 per cent 
critical, the amplification factors for displacement, velocity, and 
acceleration, are only slightly over 1, 1.5, and 2.0, respectively, for 
a wide variety of earthquake and ground shock motions. These amplifica- 
tion factors increase quite rapidly, however, as the damping decreases, 
and decrease relatively slowly as the damping factor increases from the 
values of 5 to 10 per cent. 

RESPONSE SPECTRA FOR INELASTIC SYSTEMS 

A typical inelastic spring force-displacement relation is shown 
in Fig. 8. This can be approximated by an elasto-plastic relation as 
indicated, with an elastic initial region, a plastic ceiling of constant 
resistance, and an elastic unloading. The unloading is considered to be 
elastic until yielding is reached in the opposite direction. For equal 
yield values in either direction, calculations of the response of the 
system of Fig. 2 for an elasto-plastic resistance function can be made. 
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A variety of such calculations have been made and are reported in Refs. 2 
and 4. It is interesting and instructive to plot the results of such 
calculations on a chart similar to the tripartite response spectrum 
charts of Figs. 5 and 6. This can be done directly for the elasto-plastic 
system, for constant values of ductility factor p, which is the ratio of 
the maximum relative displacement of this spring to the yield point value 
of displacement. However, the plot can be made only in terms of the impow 
elastic component of displacement, in which case the accelerations are 
properly presented; or alternatively for the total displacement, in which 
case the accelerations are not properly presented. Since the former case 
is most convenient, this is what has been used as a basis for the chart 
shown in Fig. 9, which is presented also for the El Centro Earthquake, for 
elasto-plastic systems having varied amounts of yielding, but with a 
damping factor of 2 per cent of critical in the elastic range of the res- 
ponse. Ductility factors ranging from 1, or elastic behavior, up to 10, 
are shown in the figure. The total displacements can be obtained 
directly from the figure by multiplying the displacement components by the 
value of p, the ductility factor, assigned to each curve. It is noted in 
Fig. 9 that the displacements vary roughly inversely as the ductility 
factor for the left-hand side of the chart or for low or even intermediate 
frequency systems, and the accelerations are nearly the same for all high 
frequency systems. This is consistent with the observations made earlier, 
for low frequency systems, that the spring displacement is equal to the 
maximum ground displacement, and this is true regardless of the nature of 
the spring or force displacement curve. For high frequency systems, the 
acceleration of the mass must be the same as the ground, and, therefore, 
the acceleration must be the same as the ground acceleration regardless of 
the characteristics of the spring. 

The results obtained in Fig. 9, and from similar calculations 
for other earthquake and ground shock motions, are approximated in Fig. 
10. In the left-hand side of this figure it is apparent that the total 
displacement is the same for the elasto-plastic response as for an elastic 
system; and for the right-hand side, the acceleration is the same for the 
elasto-plastic system as for the elastic system. In the intermediate 
region, one can approximate the results by use of the relationship that 
the energy is the same for the elasto-plastic system as for an elastic 
systemhaving the same frequency. These observations lead to further 
generalizations which have been verified by additional calculations some 
of which are reported in Ref. 2, but others are still under study. The 
generalizations may be stated as follows: 

(1) For low frequency systems, the total displacement for the 
inelastic system is the same as for an elastic system having the same 
frequency. 

(2) For intermediate frequency systems, the total energy absorbed 
by the spring is the same for the inelastic system as for an elastic system 
having the same frequency. 
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(3) For high frequency systems, the force in the spring is 
the same for the inelastic system as for an elastic system having the 
same frequency. 

A number of stress-strain curves are shown in Fig, 11, and 
the above-mentioned rules are indicated in that figure. In the region 
where displacement is preserved, the forces or accelerations vary in 
accordance with the ordinates to the curve of stress or force relative 
to strain, at a constant strain ordinate. In the region where energy 
is preserved, both the displacement and the force vary in such a way 
as to keep the area under the various curves the same for all of the 
curves shown. In the region where force is preserved, the displace- 
ment varies in accordance with the displacement abscissas for a con-
stant value of stress. 

Shown in Fig. 11 are lines corresponding to (1) an elastic 
resistance, (2) an inelastic resistance having the same initial slope, 
(3) an inelastic resistance showing a maximum and a decay beyond the 
maximum, and (4) an elasto-plastic resistance, as indicated by the 
dashed line. 

However, Fig. 11 indicates that the line for a force greater 
than the yield point force for the elasto-plastic curve will never 
intersect the elasto-plastic curve, and will, therefore, give an 
infinite displacement. This is not the case under actual conditions. 
Limits that are more realistic can be obtained if one plots the res-
ponse spectrum in terms of total relative displacement for the inelas- 
tic curves, as indicated in Fig. 12. Here the lower set of lines 
corresponding to D, V, and A are for an elastic condition. The 
curves Dl, Vl, Al are drawn for an inelastic force-displacement rela-
tion in which displacement is preserved for Di, energy is preserved 
for Vi, and acceleration is preserved for Al. Similar curves are 
shown for V2 and A2 at somewhat higher levels of inelastic behavior. 
Curves for other levels can also be drawn, say for V3 and A3, for example. 

At a frequency such as fa , all of the displacements are 
bounded by point a, and the displaced limit is the same for all of the 
inelastic curves considered. 

At a frequency such as fb, the displacement limit corresponds 
to point Bo on 7, and a greater displacement corresponding to point 
b1  on V. However, one cannot reach 172  without crossing the line 
corresponding to I. Hence, the upper bound of displacement is given 
by .b. 

At a frequency such as fc, the displacement bourd iF given 
by co on line r, c1  on line Al, but by c2 on V2, which intersection 
is reached before the line reaches A2. Similarly the upper bound is 
c on line D, which is below V3. 
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In other words, for inelastic systems, for low frequencies, 
displacement is preserved. For intermediate frequencies, energy is 
preserved, except that the displacement can not be greater than the 
displacement bound for the elastic response spectrum. Furthermore, 
for high frequency systems, force (or acceleration) is preserved, pro-
vided that the energy absorbed is not greater than the energy bound for 
the elastic spectrum, and provided also that the displacement is not 
greater than the displacement bound for the elastic response spectrum. 
It should be pointed out that the relative values to be used here for 
the elastic response spectrum should be those corresponding to about 
5 to 10 percent of damping; otherwise, the acceleration and velocity 
bounds will be too high. 

MULTI-DEGREE-OF-FREEDOM SYSTEMS 

A multi-degree-of-freedom system has a number of different 
modes of vibration. For example, the shear beam shown in Fig. 13 has 
a fundamental mode of lateral oscillation as shown in Fig. 13(b), a 
second mode as shown in Fig. 13(c), and a third mode as shown in Fig. 
13(d). Each of these modes can be considered to vibrate independently, 
with parti dpation factors as defined in the usual way, and as described 
in detail in Ref. 1. A response spectrum for a multi-degree-of-freedom 
system can be drawn for a particular system, as a function of the funda-
mental frequency of the system, in much the same way as a response 
spectrum for a single-degree-of-freedom system is drawn. We may do this 
so as to define displacement bounds D' , V' , and A' , for the multi-degree-
of-freedom system, which are drawn in such a way that they can be used 
instead of D, V and A to give the response values desired for the multi-
degree-of-freedom system, when the fundamental frequency is used to 
define the frequency for the response spectrum value for the multi-degree- 
of-freedom system. These curves then involve the participation factors 
and modal responses for the various modes. The relationships are shown 
schematically in Fig. 14. Further exploration of these concepts is 
under way and is presented in somewhat more detail in Refs. 5 and 6. 

For horizontal motions of the base of a structure founded on a 
firm foundation without rocking, the participation factors of the various 
modes can be selected by proper choice of the modal values, as indicated 
in Ref. 1, so as to make participation factors unity. When the modal 
values are so chosen, a particular response parameter at a particular 
point in the structure, a has values for each of the modes designated by 
a (for the nth mode). The quantity a may be an acceleration of a 
particular mass, a strain at a particular point, a moment at a particular 
joint in a particular member, a shear in a particular story, displacement 
of a particular node or joint, etc. If for every frequency fn  of the 
structure there is defined by the response spectrum a relative displace-
ment response value of DnI  then because the various modal maxima cannot 
occur simultaneously, an upper bound to the particular response quantity 
is given by the following relation: 
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< I an Dn 
I (5) 

This equation indicates that the actual response quantity a is less than 
or equal to the sum of the absolute values of all of the modal response 
values, each of which is equal to the response value for that mode, qn, 
multiplied by the spectrum displacement value for that mode, Dn, provided 
that the participation factor for the nth mode is unity. 

Relations equivalent to Eq. (5) carbe stated in terms of the 
other response spectrum parameters, as follows: 

< 1, I anVn/wn  

art  Ang/w 

These relationships, of course, are applicable only to an elastic system. 

The summations in the three preceding equations give absolute 
upper bounds to the response quantities. It is shown in Ref. 7, for 
example, that the probable value of the response parameter, a, is equal 
approximately to the square root of the sum of the squares of the modal 
values, as indicated by Eq. (8). 

aprob m Pernt771):02 (8) 

Equations corresponding to (8) can be written involving Vn, or Ang, of 
course. 

Along a line where Dn  is constant, Eq. (5) assumes a simpler 
form. Similarly along lines where Vnor An  are constant, Eqs. (6) and (7) 
assume also simpler forms. For example, if Dn  = D = constant, one has 
the result 

"El an I (9) 

If a is set equal to D', then one has the result 

D 
B- 10111 

Similarly one can compute V. and Al as follows, for the cases where Vn  or 
An  is constant, respectively: 
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A 
A - (.1) I  an = an 1 (7; I I ( 12 ) 

Equations (10), (11), and (12) give a procedure by which the 
multi-degree-of-freedom spectrum can be plotted from the single-degree 
spectrum values. A different spectrum will be drawn for each response 
quantity desired of the multi-degree-of-freedom system. 

A number of comparisons have been made for the exact responses 
of multi-degree-of-freedom systems for various ground motions, compared 
with the computations of upper bounds from equations such as (5), (6), 
and (7), or of probable values from equations such as (8). 

Such calculations are reported in Refs, 5, 6, and 8, for 
example. In Ref. 8 it is shown that for systems with a small number of 
degrees-of-freedom, say 4 or less, the true response for an earthquake 
motion is very nearly equal to but slightly less than the sum of the 
absolute values of the modal maxima. For a large number of degrees-of- 
freedom, say 12 or more, the true response is very nearly equal to the 
square root of the sum of the squares of the modal mexXma. For systems 
with an intermediate number of degrees-of-freedom, the true response is 
generally about midway between these two values. In Figs. 15 and 16 
there are shown calculations of response for two different 5 degree-of-
freedom systems; in Fig. 15 the system corresponds to uniform masses and 
springs, and in Fig. 16, the system has varying springs but uniform 
masses, in both cases subjected to. a particular ground shock, as recorded 
in event Aardvark, a nuclear detonation. The responses are given for the 
relative story deflections in each of the five stories of the 5 degree-of-
freedom shear beam. Both the sum of the absolute values of the modal 
maxima and the square root of the sum of the squares are plotted in the 
figure, which compares the true spring distortion (computed for the actual 
ground motion input by a step by step integration procedure) with the 
approximate spring distortion computed from the true response spectrum. A 
value of sa  = 1.00s would correspond to the approximate value equal to the 
exact value. It is noted that in every case the sum of the absolute values 
of the modal maxima lies above this value, as it should, and the square root 
of the sum of the squares value lies below, although there is no reason why 
in some cases some of these values should not lie above the line sa  = 1.00s. 
The general rule described previously would indicate, for a 5 degree-of-
freedom system, one should use the average of the two values so computed. 
It appears that this is borne out by the results plotted in Figs. 4, and 16 
also. However, errors less than about 40 per cent in general, and in most 
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cases not much greater than about 20 per cent would be involved if one 
were to use either of the two approximations for this particular case. 

Similar calculations for other input motions and somewhat 
different structures lead to the sane general conclusions, which appear 
to be valid except where the spacing of the frequencies is such that 
several modes having nearly the sane frequency are involved. 

It appears, therefore, that we can use the results of modal 
calculations to infer the responses for actual earthquakes, by use of 
the response spectrum. This may introduce errors in some cases, but 
the errors are relatively small. One must keep in mind the fact that 
the average of the responses for a large number of earthquakes would be 
more nearly consistent with the results arising from the use of a smooth 
spectrum value and would be more nearly representative of probable 
values, than the values for a particular single earthquake. 

Calculations have been made for a number of cases of inelastic 
multi-degree-of-freedom systems to give their responses 'to particular 
earthquakes. Such calculations are reported in Ref. 5 (for two-degree-
of-freedom systems), Refs. 9, 10 and 11 (for a five-degree system). 
Although generalizations cannot be readily made, because of the sparse-
ness of the data, it does appear that the generalizations made herein, 
and outlined in Fig. 12, are applicable as bounds for a multi-degree-of-
freedom system, in general, provided that the response spectra for the 
multi-degree-of-freedom system is determined as indicated in Fig. 14. 

RESULTS OF ELASTIC ANALYSES FOR TALL BUILDINGS 

Shear& and overturning moments in a number of tall buildings 
have been computed and are reported in various references. A particu- 
larly interesting comparison is shown in Ref. 12. In using the data 
from Ref. 12, however, one should keep in mind the fact that the res-
ponse spectrum used was one which corresponded to a maximum velocity 
response of about 1.2 in./sec. or roughly about one-sixteenth the El 
Centro response spectrum. The calculations when so interpreted 
indicate that the Uniform Building Code values for base shear are from 
1/2 to 1/6 those computed by the more exact analysis, and that the shears 
at higher elevations of the building generally increase relative to those 
given by the Uniform Building Code. Overturning moments are also some-
what higher than those given by the Code, but the upper stories generally 
have a more conservative moment relative to the base value. 

A new series of calculations is reported herein. These calcula-
tions were made by the writer's colleague, Dr. S.J, Fenves, using the 
high-speed digital computer in the Department of Computer Science at the 
University of Illinois. Calculations were made for a series of build- 
ings having 40, 30, 20 and 10 stories, with parameters chosen so that the 
fundamental periods of vibration for all of these were either 3 secs. or 
1 sec. The response spectrum used was one having a displacement bound 
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of 10 in., a velocity bound of 20 in. and an acceleration bound of 
0.667g. This is very nearly the response spectrum for the El Centro 
earthquake for elastic conditions. Two types of buildings were con- 
sidered, namely, a flexural building, corresponding to a shear wall struc-
ture of uniform properties over the height, and a "shear beam" building, 
corresponding to a frame structure. Deflections of the flexural building 
are shown in Fig. 17. Values are given for the square root of the sum of 
the squares, designated "RMS" on the figure and for the sum of the absolute 
values of the modal maxima, designated by "MAX" on the figures. 

The maximum story shears are shown in Fig. 18. The Uniform Building 
Code values, for a coefficient K=1, but multiplied by factor of 1.5 to 
account for the difference between working stress and yield point, are 
shown on the figure for comparison. It is seen that the base shear 
computed for these buildings is about 3 to 3.5 times the Uniform Building 
Code value. Near the top of the building, the values are from 5 to 6.5 
times the Uniform Building Code values. These comparisons are for the 
"RMS" values. The "MAX" values are considerably higher, but are not 
considered reasonable to use for the multi-story building. This is an 
indication that for the building described, and for the El Centro Earth-
quake, a ductility factor of the order of 3 is required at the base, and 
about 5 near the tcp of the building, in order that the Uniform Building 
Code lead to a design which is not inadequate. Unless these ductility 
factors are provided for by the details of construction and inspection, 
an earthquake of intensity equal to the El Centro Earthquake would 
produce serious consequences in the building considered. 

A similar comparison is made for overturning moments. Here the 
comparisons are made against the cantilever moments rather than the design 
overturning moments by the Uniform Building Code. Near the base of the 
building, the "RMS" values are 1.6 to 1.8 times the Uniform Building Code 
values for overturning moments. These are about one-half the values, 
relatively, of the base shears and correspond to a reduction factor for 
overturning moment of the order of about 50 per cent of the cantilever 
moment values corresponding to the "RMS" base shears. For comparison, 
the shear beam building for the same heights and periods leads to results 
that are given in Figs. 20, 21, and 22. The deflections shown in Fig. 20 
are slightly less than those shown in Fig. 17, but the shape of the 
deflection curve is considerably different. The maximum story shears, as 
shown in Fig. 21, indicate a ductility factor requirement of 2 or slightly 
less at the base, and about 2.5 to 4 near the top of the building. Some- 
what lower ductility factors are required, therefore, for the frame or 
shear beam building, for the same conditions, relative to the flexural or 
shear wall building. The overturning moment values are 1.7 to 1.8 times 
the Uniform Building Code cantilever moments, which corresponds to a 
reduction factor of the order of about 0.85 to 0.9, instead of 0.5. In 
other words, the shear beam building or frame, has a much greater over-
turning moment, relatively, than the flexural or shear wall building. 

A further comparison still is given for the shear beam building for 
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the shear beam building for a period of 100 sec., for the same number of 
stories. This is, of course, an unreasonable type of structure even to con- 
sider for 40 stories, but not for 10 stories. However, it is of intrest 
to note that the ductility factors required for shear for these buildings 
range from about 3.7 to 4 at the base, and are about the same at the top, 
although for the 10 story building they do go up to slightly larger 
values. The reduction factor for overturning moment is about 0.95 to 
1.0, however, or in other words the overturning moment is nearly equal 
to the cantilever moment. 

Based on these results and other analytical studies, it is 
concluded that a reasonably conservative design basis for a building 
involves a response spectrum approach, but with the use of a reduced 
ground motion, corresponding to a selected value of ductility factor 
which can be mobilized by the method of construction chosen. The 
method of selecting the response spectrum to use in such an analysis is 
indicated in Fig. 26. The trapezoidal set of lines designated by the 
legend "ground motion" corresponds to the maximum values of ground dis- 
placement, velocity, and acceleration. The elastic spectrum, designated 
by the symbol u = 1, for displacement and acceleration, D and A, repre-
sents slightly amplified values, corresponding to an elastic response 
spectrum for the ground motion considered. The curve marked D for 
P = 5, is the displacement spectrum for a ductility factor of 5, and the 
curve marked A for p = 5 is the acceleration or force spectrum for the 
same conditions. These are drawn so as to conserve displacement on the 
left-hand side, force on the right-hand side, and energy in the central 
part, An elastic analysis made for the reduced acceleration spectrum 
would, therefore, correspond to the ductility values derived for the 
conditions described. 

The relations between the various bounding lines in Fig. 26, for 
an elasto-plastic resistance function, are relatively simple to compute. 
A summary of the values so computed is given in Table I. The table lists, 
for each of the quantities that can be conserved, namely, displacement, 
energy or velocity, and force or acceleration, the ratio between the 
elasto- plastic and the purely elastic response values for total displace-
ment or for acceleration, as a function of the ductility factor u. 

For example, when u = 5, the tabulated values indicated are as 
follows: along a constant displacement line, the displacement is the 
same, and the acceleration is one-fifth as much for the elasto-plastic 
spectrum as for the elastic spectrum. Along a constant velocity line, 
the displacement is five-thirds as great, and the acceleration one-third 
as great, for the elasto-plastic spectrum compared with the elastic 
spectrum. Finally, along a line of constant acceleration, the displace- 
ment is five times as great and the acceleration value is the same as 
the value for elastic response, 
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DESIGN OF COMPOSITE 41-STORY BUILDING 

An example of the use of these concepts in the design of an 
actual building is illustrated next. The particular building chosen 
was designed originally as a shear wall structure. ibwever, in review-
ing the design, I felt that it was desirable to add more flexibility in 
the lower stories, and recommended that these be made of steel frame 
construction so as to permit greater flexibility and energy absorbing 
capacity there. The lower six stories were, therefore, made of steel 
frame construction and the upper part was to be designed to be either a 
concrete shear wall or a braced steel frame. The deflection for the 
composite building, for a Zone 2 earthquake response spectrum, is shown 
in Fig. 270 This is on the upper bound of Zone 2, and is about three- 
quarters of the El Centro earthquake response spectrum. The building 
has a period of about 2.3 secs. 

The maximum story shears are shown in Fig. 28. For the 
response spectrum selected, the ductility factor required is about 2 or 
slightly less. Indicative of this is the comparison shown in Fig. 29, 
where the spectrum is one which corresponds to a ductility factor of 
about 2 relative to that used in Fig. 28. Here, the design values are 
slightly less than those corresponding to the Uniform Building Code, when 
the latter is increased by the ratio of yield point to working stress 
values. It is concluded that this building will be adequate for a 
ductility factor of 2, for the exposure considered, namely, about three-
quarters of El Centro, and will have adequate resistance to cope with a 
stronger earthquake without danger of collapse. The purpose of selecting 
a relatively conservative ductility factor of 2 in this case was to avoid 
expensive repairs for the expected earthquake hazard. 

The overturning moments for the same building are shown in Fig. 
30. It is noted that the overturning moment is considerably higher than 
that given by the Uniform Building Code, and the design was made so as to be 
consistent with the computed values rather than with the Code values. The 
overturning moment corresponding to the reduced spectrum is shown in Fig. 31. 
It appears that the reduction in cantilever moment corresponding to the 
Uniform Building Code value for this building is almost twice as great as 
from the analysis. 

SPECIAL CONSIDERATIONS 

In regions where unusual types of ground motions can be expected 
because of oscillations of the soil over deeply buried rock, modifications 
to response spectrum must be considered. This is particularly essential 
in places like Mexico City where amplification of ground motions in the 
range of periods from 2 to 2.5 secs. occurs because of the natural 
frequency of the bowl of soft soil on which most of Mexico City is 
founded. An example of a building designed for the special conditions 

• 
a 
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in Mexico City is given in Ref, 13, This building, the Latino Americana 
Tower, was designed for a base shear of the order of 500 metric tons, 
corresponding to an earthquake of Modified Mercalli Intensity VIII, but 
taking into account the amplification of motions corresponding to the 
natural period of vibration of the soil on which the building rests, 
During the construction the building was modified to provide for a heavy 
television tower at the top, Shortly after the construction was 
completed, a major earthquake occurred, corresponding to the intensity for 
which the building was designed, Recording instruments had been instal- 
led in the building, on which records were obtained during the earthquake, 
The values recorded were almost precisely those which had been considered 
in the design as being consistent with the probable values corresponding 
to Eq. (8) herein, 

In regions where substantial vertical earthquake accelerations 
occur, or in some cases for unusual types of construction which may have 
a different resistance to motion in one direction than another, a 
peculiar phenomenon similar to "pumping" may be encountered. This-is 
best illustrated by an analysis described in Ref. 14. Consider, for 
example, a mass sliding under a constant force, having a frictional 
resistance against the sliding surface. The friction coefficient may be 
characterized by the coefficient No If one considers the effect of the 
gravity action on the sliding mass, the force required to produce down-
hill sliding is less than that required to produce uphill sliding, Two 
extreme cases of rigid-plastic resistance, corresponding to the condition 
shown in Fig, 32, are considered in the calculations described in the 
following. These involve a symmetrical resistance corresponding to a 
mass sliding horizontally, with the same resistance in either direction, 
and an unsymmetrical resistance, corresponding to a frictional resistance 
against sliding in one direction and an infinite resistance against 
sliding in the other direction. 

Calculations were made for these two conditions for the four 
earthquakes described in Table II, For these four earthquakes, the 
values of acceleration and time scale were modified so as to give a 
maximum acceleration for all of the earthquakes of 005g, and a maximum 
ground velocity of 30 in./sec. The maximum displacements for the four 
earthquakes range from 20,5 to 51.2 in. The purpose of normalizing the 
earthquakes was to obtain a more consistent set of data for strong earth-
quake conditions, 

The case of symmetrical resistances is shown in Fig, 33, where 
the maximum displacement of the sliding mass relative to its support is 
plotted against the ratio of the resistance coefficient to the maximum 
acceleration of 005g, The envelope of the plotted points corresponds to 
a condition in which the maximum energy of the mass, corresponding to the 
quantity 1/2 MV2, is absorbed by the resistance multiplied by the distance 
over which sliding occurs, A slight correction to this energy, to account 
for the fact sliding doegVccur unless the acceleration exceeds the 
resistance, is indicated by the lower curve. In no case does the maximum 
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displacement exceed the maximum ground displacement for the condition of 
symmetrical resistance, 

Figure 34 summarizes the displacement for unsymmetrical resis- 
tance, Here the displacements are almost 6 times as great as those in 
Fig, 33, for the maximum condition, In other words, the earthquake 
considered corresponds to a condition of something like 6 pulses for 
unsymmetrical resistance contrasted with only 1 effective pulse for sym-
metrical resistance contrasted with only 1 effective pulse for symmetrical 
resistance. The factor 6 is no doubt dependent upon the duration of the 
earthquake motions. It is probably proportional to the square root of 
the total duration, This factor is consistent with a duration of about 
30 to 40 secs., corresponding to the duration of the earthquakes for which 
the calculations were made. 

Similar calculations were made with elasto-plastic resistances 
having different yield points in the two directions, As soon as the 
difference in yield point was more than just nominal in value, the "pumping" 
appeared to be almost as great as for the rigid plastic resistance reported 
in Figs. 33 and 34, Hence, it is concluded that substantial increases in 
displacement can occur under conditions where yielding occurs for vertical 
motions, or where the conditions of yielding or of coupling with adjacent 
structures introduces a substantially greater resistance to deflection in 
one direction than in another, Care must be taken to avoid such conditions 
or to provide adequately for them. 

In buildings which have a combination of a frame and a shear wall 
to resist earthquakes, consideration must be given to the interaction of 
the different types of construction, their different ductilities and flexi- 
bilities, The difference in pattern of displacement of a frame and a 
shear wall is shown in Fig. 35. When a building contains these two 
elements, the partition of shear between them must be such as to produce 
equal deflections of the two elements. Because of the difference in the 
shape of curves, it appears that the shear wall will take more than the 
total shear near the base, but will be restrained relatively in the oppo- 
site direction by the frame in the upper part of the structure, Pro- 
vision for the inter-reaction between the two elements must be made if 
the structure is to behave properly. Moreover, consideration of the 
change in configuration and energy absorbing capacity, if the shear wall 
fails during the course of the deflection of the structure, must be taken 
into account in assessing the over•-all behavior of the composite structure. 
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CONCLUDING REMARKS 

• 

For earthquakes of the intensities experienced in regions 
subjected to strong earthquakes, energy absorbing capacity and 
ductility are essential to permit deformations to occur beyond the 

• range of linear behavior or the range of ordinary working stresses. 
It is possible to design modern tall buildings to resist earthquakes 
with an adequate margin of safety. The margin that can be achieved 
is a function of the price one is willing to pay as a sort of insurance 
against normally expected earthquake intensities, and the degree of 
damage one is willing to permit in an extraordinarily severe earthquake. 

The general philosophy is proposed that a building should 
suffer little if any damage in the intensity of earthquake that might 
normally be expected several times during its life, in order to avoid 
expensive repairs. However, the building should have an adequate 
reserve capacity against collapse should an extreme earthquake occur 
at any time. 

4 

4 

• 
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Quantity Conserved 
Elasto-Plastic Relative to Elastic Response 

Total Displacement Acceleration • 

TABLE I 

RATIOS OF ELASTO-PLASTIC TO ELASTIC RESPONSE SPECTRUM VALUES 
IN VARIOUS RANGES 

• 
• 

Displacement 1 1/11 

Energy or Velocity la/ 21177. 1/ /717. 

Force or Acceleration 

TABLE II 

EARTHQUAKE CONSIDERED IN ANALYSIS 

Earthquake 
Maximum Ground Motions 

Acceleration 
g 

Velocity 
in. /sec. 

Displacement Duration 
in. sec. 

Normali zed* 
Displacement 

in. 

1.  Ferndale 
12/21/54, N45E 0.205 10,5 8.26 20 27.7 

2.  Eureka 0.178 12.5 10.0 26 51.2 
12/21/54, SIN 

3.  Olympia 0.210 8028 9.29 26 20.5 
4/13/49 

4.  El Centro 0.32 13.7 8.28 30 25.5 
5/18/40, N-S 

* 
Normalized to give acceleration = 0 0 50g 

and velocity = 30 in./sec. 
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1.-T 5 0.05 sec. 
f > 20 cps 

2.-T =0.1 sec. 
f =10 cps 

3,- T = 0.4 sec 
f = 2.5 cps 

4.-15 Story T =1sec., f =1cps 6,-T= 4 sec. 
5:40 Story T=2.5 sec., f=0.4 cps f =0.25 cps 

7.-T = 6 sec., f =0,167 cps 

FIG. I STRUCTURES SUBJECTED TO EARTHQUAKE GROUND 
MOTIONS 
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FIG. 2 SYSTEM CONSIDERED 
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FIG. 19 MAXIMUM OVERTURNING MOMENTS—
. 40—, 30—, 20—, AND 10—STORY FLEXURAL 

BUILDINGS, To  3 SEC., D= 10 IN., 
V= 20 IN. PER SEC., A = 0.667 g. n-39 
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FIG. 20 MAXIMUM FLOOR DEFLECTIONS 
40-, 30-, 20-, AND 10-STORY SHEAR 

VI-40 BUILDINGS, To  = 3 SEC., D = 10 IN., 
V=20 IN. PER SEC., A=0.667 g. 
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FIG. 21 MAXIMUM STORY SHEARS  
40-,30-,20-, AND 10-STORY SHEAR 
BUILDINGS, To = 3 SEC., D =10 IN., 
V=20 IN. PER SEC., A=0.667 g. VI-41 
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FIG. 22 MAXIMUM OVERTURNING MOMENTS 
40-, 30-, 20-, AND 10-STORY SHEAR 

VI-42 BUILDINGS, T0= 3 SEC., D=10 IN., 
V=20 IN. PER SEC., A = 0.667 g. 
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FIG. 23 MAXIMUM FLOOR DEFLECTIONS 
40—, 30—, 20—, AND 10—STORY SHEAR 
BUILDINGS, To = I SEC., D =10 IN., 
V = 20 IN. PER SEC., A = 0.667 g. 
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FIG. 24 MAXIMUM STORY SHEARS  
40-, 30-, 20-, AND 10-STORY SHEAR 
BUILDINGS, To= I SEC., D =10 IN,, 
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FIG. 25 MAXIMUM OVERTURNING MOMENTS 
40-, 30-, 20-, AND 10-STORY SHEAR 
BUILDINGS, ;= I SEC., D=10 IN., 
V =20 IN. PER SEC., A= 0.667 g. 

  

 

VI-45 



C) 

N
O

S1
2:

IV
di

A
10

0  

0 

rn

0  

V
eL

L
3
3

d
S

 0
1.1

S
V
1
d

 —
 0

1 S
V

-1
3 

Velocity, in./sec. 
fto 

G) 

0 

O 
Os 

O 

• 

>,'

yf 
7-- 

,`, ;•-• ..p'-'/ 
..„. ,'),-..,,,,. 4. 00,  . 

1
. 

zi 0:- •••-•  - .1\ ,ip:1.0r-- ,t0'  * 1 
\C's t  ,, 

  

..S.,,,  - i,* 1...),..' s'.... -\\ - 1,2.4,  , j••'  1,-, 

' ''',.' • ••.. .4. ;I' , r.„ , 
, ,-7-  

-.N.. , 1- *- 4-- .... ** ‘,/ .1( * A /.., 4 t 
ik t 'w,

t.‘,, 

 -- k. > 3
,
,••• .

:,,, 
 

` 
• 4 4•

..0 , I /  
,L -;- 1•111  01•• .- - 

<

4,

,/•1

1

.?
‹,.,

fi 

„ VS, 

1
▪  ,1 A. • A  K 

+Kt < r 0 rv - 

• • „ •-c 
< I „‘ 

\ 

-*I 
ler 4 

.0 en 

0 
5 

)00,  y 

f \ 
8   4,- \  

(1  'I/ •••\ 

— k 
.- --'\ ',,,1 •-- 

,•.' 4,- --A,- 
'4(4 

. 
)/

... ,-  
y 1 \ ,f•z( j ,,' e< , s'g ,‹ 

—`. 1 4 • 7 '7 A i , "C ''' 1-,..-- //\,,k-7.2r-...‘;/.... •.,„,.;.,  x,,  ;'...... ....] ' ' is  -4.— .- -4,4- .... -,-•- .'...,,,.....,.. ,'`,.. ..„, 

11  
 ,. ,i,s, -., 1' ),/ i \ . , • X : • \ i .. )S 

..t.  

AI  .., ...-_,_,..„>,,, -1—  
, 

.,..x 1  
, , ; 1),!. '\ 

sx ,,i4 K ',., • • --, '4 + ;•1;/-  t-•, l 1{„, •A:  •  
\ : /, 

ti 

, 

-,.. • - --42.\- 
i/:

-1,71 +'...,,— 

.,,,, 
 I 41 '>(4:',.. ,•••,--;'):— • 1 / •7\ 1 , 'I: ' 1 ,- 

io  / / ' i \, „ x'  •. • ., / -., \ ,•• / i  : ,  / ! • / '., ' ,, -,ts  : 2, 
/..,4\7 -  

/<„ 4 ,i, . •,,,>e ' ! s'X ' .1 ').' i'' '' • ; ‘‘,L  I st, ./. :X
,
1›,/ \ 

' —1.-- ...'1;.',4' , ),,..._74.4 :>,1„,.., 1
:.
< ; 4 ' 1 , 4  "., .,' • ' , )14., \ , j ,,.,-, ! . -. : 4' l'' 

, /  ' -.-  1,  , .. ./  \ 1    $       

..., , , ... . . ' ' .1•:X7 ). ./'  '.;'- :' 2(e'rf ''''.'., . -
-,.. • --....- 84:4;?..°^44,_4,/f,,,  Z-- -1,2t.,.-\

• ...„, \ 

.̀.n., ''' ----— '') N Y ---- ..„._ ,, ,„.. ,,,,.- --..+' 
=k, 7e  - ..< .„.-,. +,. A: ,,Lr  K-.4  t  — 4.,  ' 4-- •-2.-‘/;.,•—•\t' .' --114410;1/ApSri—• ;4:4:4 

. - ., 
s

,., :i.,71. 'fz, -  r--y 1- ,/ - -- 7," t• * -,tt 1-,,  :-.,:-.c, -1-",-7- ,,,.  -;-\---s,,,2%- 
„ I , ,/ ..; ,,, 

,.., .../ .,, :, , 7 , ,,.‘ ,-,-...„,;,,,‹1,..,,;,),,,,,,„.:),-+4  .:,;,\\ 7  : :,,,,..c  /_ _,..,,„.,,,eif.   .-_  i- ,
4

1 4 

 1  

X ,,L4 •$. 

O 



Floor Deflection, in. 

FIG. 27 MAXIMUM FLOOR DEFLECTIONS 
COMPOSITE BUILDING, To= 2.324 SEC., 
Dr. 6 IN., V = 15 IN. PER SEC., A= 0.5 g. VI-47 
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FIG. 28 MAXIMUM STORY SHEARS 
COMPOSITE BUILDING, Tom 2.324 SEC., 

VI-48 D = 6 IN., V =15 IN. PER SEC., A g. 



Story Shears, kips. 

FIG. 29 MAXIMUM STORY SHEARS VI-49 
COMPOSITE BUILDING, To= 2.324 SEC., 
D= 3 IN., V= 7.5 IN. PER SEC., A= 0.375 g. 
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Overturning Moments, million ft. kips. 

FIG. 30 MAXIMUM OVERTURNING MOMENTS 
COMPOSITE BUILDING, To= 2.324 SEC., 

VI-50 D = 6 IN., V = 15 IN. PER SEC., A = 0.5 g. 
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FIG. 31 MAXIMUM OVERTURNING MOMENTS 
COMPOSITE BUILDING, To= 2.324 SEC., 

v1-51 0= 3 IN., V= 7.5 IN. PER SEC., A = 0.375 g. 



FIG. 32 MASS SLIDING UNDER CONSTANT FORCE 
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FIG. 35 TALL BUILDING WITH MOMENT-RESISTING 
FRAME AND SHEAR WALLS IN CENTER 
INTERIOR BAY 


